Remote Management of Sitting Pulmonary Artery Pressures Tested Against a Performance Goal of Reduced HF Hospitalizations and All-cause Mortality in a Prospective Multi-Center Open Label PROACTIVE-HF Trial in NYHA Class III Heart Failure

Liviu Klein, MD University of California San Francisco San Francisco, California, USA

Jason L. Guichard, MD, PhD, Eric L. Bonno, MD, Michael E. Nassif, MD, Taiyeb M. Khumri, MD, David Miranda, MD, Orvar Jonsson, MD, Hirak Shah, MD, Tamas Alexy, MD, PhD, Gregory P. Macaluso, MD, Gavin Hickey, MD, Patrick McCann, MD, Jennifer A. Cowger, MD, Amit Badiye, MD, Yasmin Raza, MD, Luka Masha, MD, Chandra Kunavarapu, MD, Mosi Bennett, MD, PhD, Faisal Sharif, MD, Michael Kiernan, MD, Wilfried Mullens, MD, PhD, Sandra V. Chaparro, MD, Claudius Mahr, DO, Rohit R. Amin, MD, Lynne Warner Stevenson, MD

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship

Grant/Research Support

Consultant Fees/Honoraria

Individual Stock(s)/Stock Options

Royalties/Patent Beneficiary

Executive Role/Ownership Interest

Other Financial Benefit

Ineligible Company

Ancora Heart, Axon Therapies, Edwards, Impulse Dynamics, V-Wave Medical, Zoll

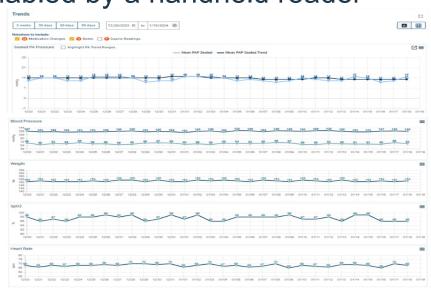
Abbott, Boston Scientific, Medtronic

All relevant financial relationships have been mitigated.

Faculty disclosure information can be found on the app

Background

 Monitoring supine PA pressures to guide HF management has reduced HF hospitalizations in select patients^{1,2,3}


 PROACTIVE-HF: evaluate the effect of remote management of seated PA pressures with the Cordella PA sensor, in addition to BP, HR, weight on outcomes in patients with chronic HF

Background

 Cordella PA sensor: wireless MEMS sensor implanted in the right PA via RHC¹

Seated PAP measurements: enabled by a handheld reader



PROACTIVE-HF

- DESIGN: Following GUIDE-HF, with FDA input, PROACTIVE-HF was changed from a randomized, single-blind design to a single-arm, open label design with blinded endpoint assessment and pre-specified safety and effectiveness endpoints defined from previous hemodynamic monitoring trials
- OBJECTIVE: Evaluate the safety and effectiveness of the Cordella PA Sensor System
- PATIENTS: NYHA III symptoms, recent HF hospitalization and/or elevated NT proBNP.

PROACTIVE-HF: Patient Flow

PROACTIVE-HF Endpoints

<u>Primary Effectiveness</u>: 6-month incidence of HF hospitalization or allcause mortality compared to a performance goal

Primary Safety: 6-month freedom from device or system-complications (DSRC) and pressure sensor failure

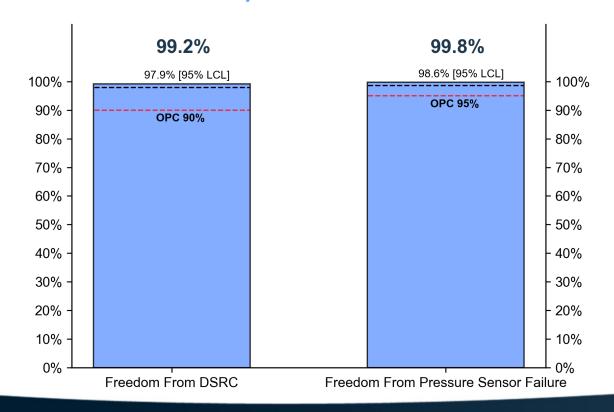
Secondary Endpoints:

- Combined outcome of HF hospitalizations, IV diuretic visits, and all-cause mortality
- KCCQ-OSS (Kansas City Cardiomyopathy Questionnaire) at 6 months
- 6MWT (six-minute walk test) at 6 months
- Change in seated mean PA pressure at 6 months
- Cumulative change in HF medications
- Patient and clinic compliance

Baseline Characteristics

Characteristic	All Subjects N = 456
Age (years), Mean (SD)	64 (13)
Female	40%
Black	18%
BMI (kg/m²), Mean ± SD	36 (9)
LVEF ≥ 50%	44%
Number of HFH in previous year, Mean ± SD	1.4 ± 1
Hypertension	88%
Chronic obstructive pulmonary disease	20%
Chronic kidney disease	43%
Atrial fibrillation	52%
eGFR, Mean ± SD	55 ± 19
NT-proBNP, Mean ± SD	1731 ± 3013
KCCQ, Mean ± SD	53 ± 23
6MWT, Mean ± SD	260 ± 121

Characteristic	All Subjects N = 456
Supine pulmonary artery pressure, Mean ± SD	28 ± 10
Pulmonary capillary wedge pressure, Mean ± SD	17 ± 9
Systolic blood pressure, Mean ± SD	122 ± 19
Angiotensin receptor-neprilysin inhibitor	44%
Angiotensin II receptor blocker	18%
ACE Inhibitor	7%
Beta blocker	87%
Aldosterone Antagonist	68%
SGLT2 inhibitor	58%
Loop Diuretic	97.4%
Enrollment: HFH criteria only	33%
Enrollment: NT-proBNP criteria only	20%
Enrollment: HFH + NT-proBNP criteria	47%
Subjects with HFH prior to implant	80%


Baseline Characteristics

Characteristic	PROACTIVE-HF Treatment (N=456)	GUIDE-HF Treatment NYHA III (N=322)	GUIDE-HF All Treatment (N=497)	CHAMPION Treatment (N=270)	MONITOR-HF Treatment (N=176)	
Age	64 ± 13	69 ± 11	69 ± 11	61 ± 13	69 (61-75)*	
Female	40%	40%	38%	28%	22%	
Non-White	24%	19%	19%	27%	NR	
BMI (kg/m²)	36 ± 9	34 ± 8	33 ± 8	31 ± 7	27 (24-32)*	
LVEF > 40%	54%	47%	45%	23%	27%	
HFH in prior year	80%	56%	54%	100%	100%	
SGLT2i	58%	1%	<1%	0%	7%	
eGFR (mL/min)	55 ± 19	54 ± 21	54 ± 21	60 ± 23	48 (35-60)*	
NT-proBNP (pg/mL)	1731 ± 3013	2258 ± 3316	2460 ± 3701	NR	2377 (837-5153)*	
RHC mPAP (mmHg)	28 ± 10	NR	29 ± 10	29 ± 10	33 ± 11	
PCWP (mmHg)	17 ± 9	17 ± 8	17 ± 8	18 ± 8	NR	
KCCQ-OS (points)	53 ± 23	50 ± 23	55 ± 24	NR	55.8 ± 23.3	
6MWT (m)	260 ± 121	219 ± 116	235 ± 120	NR	NR	
*Reported as Median (IQR); NR = Not Reported						

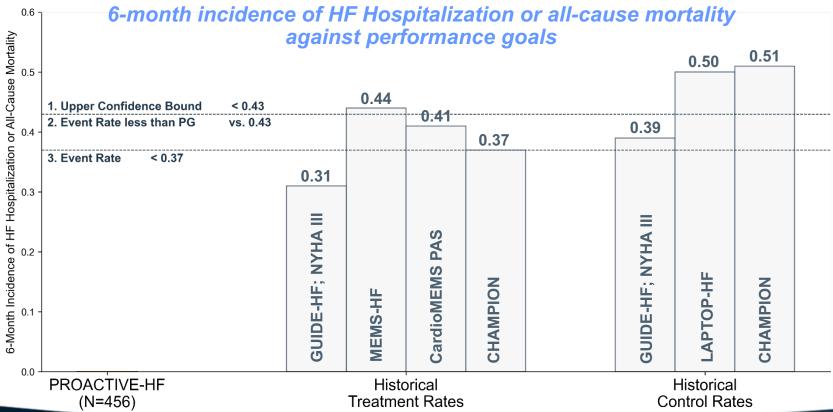
Primary Safety Endpoints

Freedom from DSRC & pressure sensor failure at 6 months

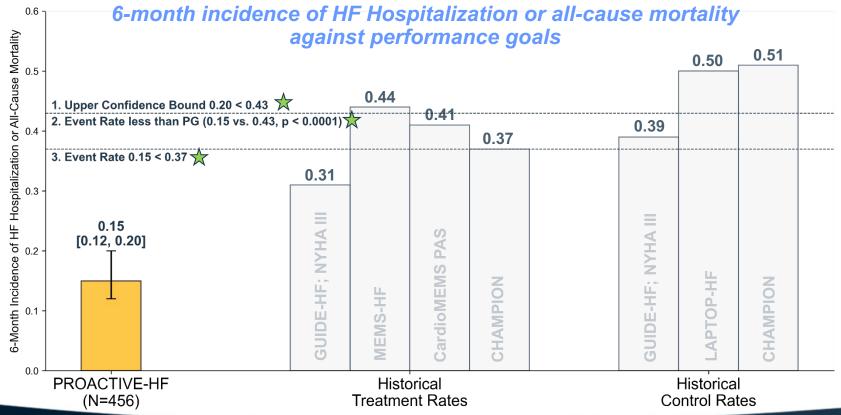
Performance goals

Primary Effectiveness Success Criteria

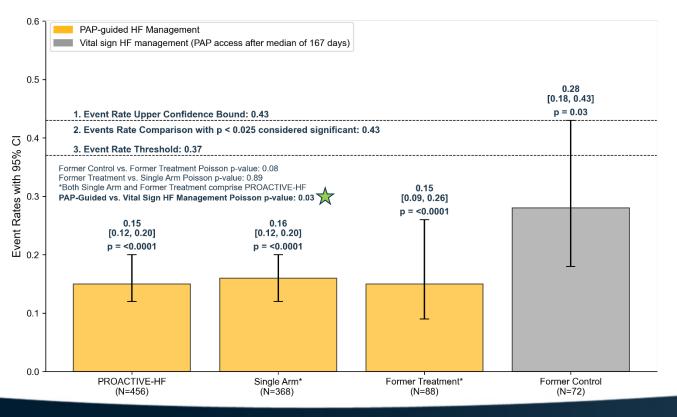
- 1. Upper confidence bound of the event rate required to be < 0.43 events/patient/6-month
- 2. Or equivalently, the event rate compared to 0.43 p-value is <0.025
- 3. Event rate is required to be <0.37 (assumed 50% SGLT2i)

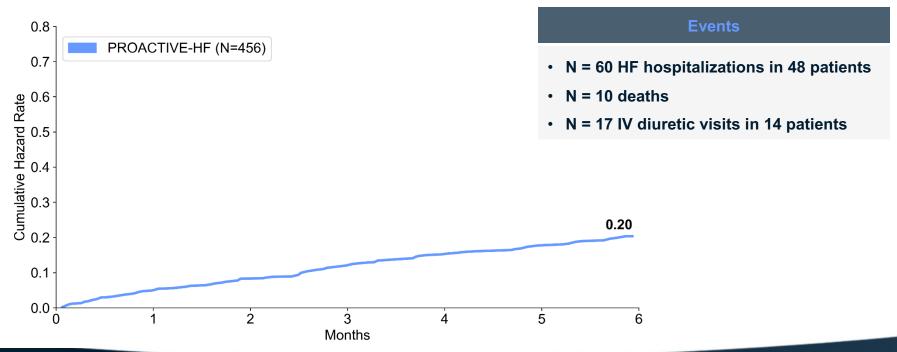

Historical Treatment Rates

Performance goals are within the confidence intervals of treatment rates from prior hemodynamic-guided HF management trials


<u>Historical Control Rates</u>

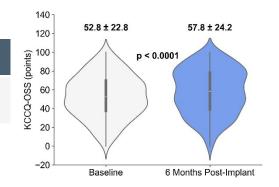
Performance goals are lower than the control rates from prior hemodynamic-guided HF management trials




Enrollment cohorts

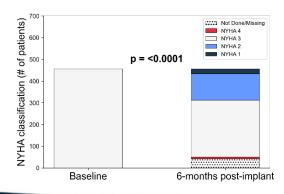
Key Secondary Endpoints

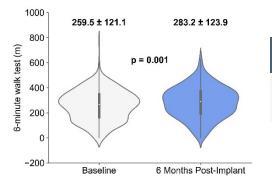
HF Hospitalizations, IV diuretic visits, or all-cause mortality

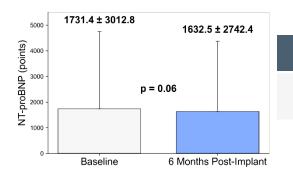


Key Secondary Endpoints

Quality of life, functional capacity, NT-proBNP


KCCQ-OSS

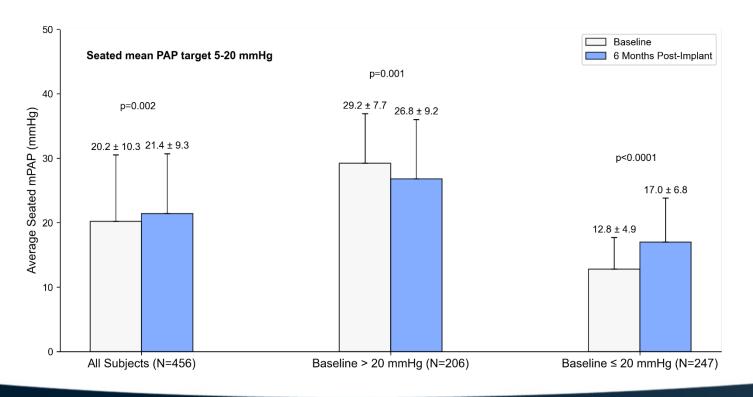

+ 5.0 points



32% improved

6MWT

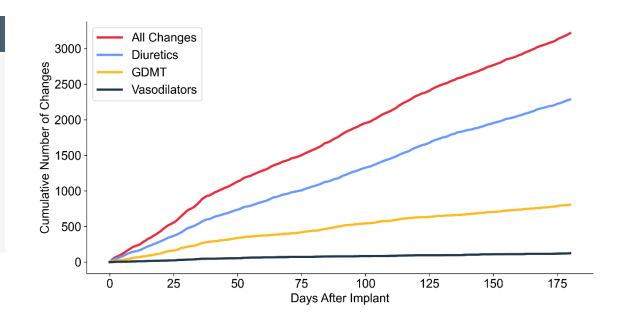
+ 23.7 meters


NT-proBNP

-98.9 pg/ml

Key Secondary Endpoints

Change in seated mean PA pressure

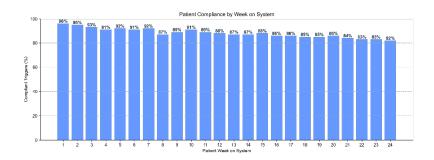


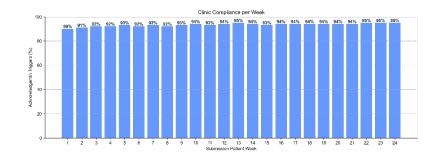
Secondary Effectiveness Endpoints

Cumulative HF medication changes

% changes per class

- 25% GDMT
 - RAS-I, Beta blocker, MRA, SGLT2i
- 71% Diuretic
- 4% Vasodilators



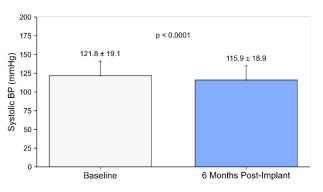

Secondary Effectiveness Endpoints

Compliance through 6 months

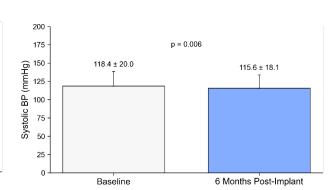
Patient Compliance: data transmission at least 5 out of 7 days (not need to be consecutive)

Clinic Compliance: Site checks patient data at least 2 times/week with maximum 4 days between

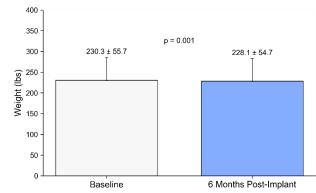
Average of 6.2 submissions/week


Average of 2.2 days between checks

Vital Signs

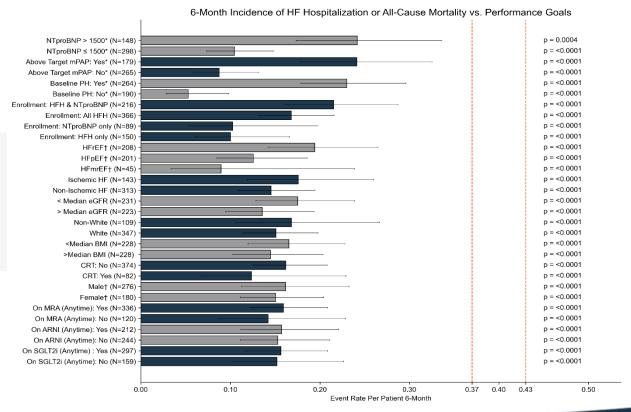

In-Office sBP

- 5.9 mmHg


At-Home sBP

- 2.8 mmHg

Weight


- 2.2 lbs

Subgroup Analysis

All subgroups analyzed compared favorably to the performance goals

Conclusions

- For HF patients with NYHA class III symptoms:
 - Cordella PA sensor and HF system was safe, improved QOL and functional capacity
 - Cordella enabled significant reductions in PA pressure for patients with PAP elevated at baseline
- The markedly low event rates may relate to high patient compliance and engagement, high rates of baseline GDMT, and proactive interventions guided by integration of daily vital signs with seated mean PA pressure (may be more relevant than supine PA pressure alone for management of ambulatory HF patients)

